Search results

1 – 1 of 1
Article
Publication date: 11 May 2010

Adrien Catella, Victorita Dolean and Stéphane Lanteri

The purpose of this paper is to develop a time implicit discontinuous Galerkin method for the simulation of two‐dimensional time‐domain electromagnetic wave propagation on…

526

Abstract

Purpose

The purpose of this paper is to develop a time implicit discontinuous Galerkin method for the simulation of two‐dimensional time‐domain electromagnetic wave propagation on non‐uniform triangular meshes.

Design/methodology/approach

The proposed method combines an arbitrary high‐order discontinuous Galerkin method for the discretization in space designed on triangular meshes, with a second‐order Cranck‐Nicolson scheme for time integration. At each time step, a multifrontal sparse LU method is used for solving the linear system resulting from the discretization of the TE Maxwell equations.

Findings

Despite the computational overhead of the solution of a linear system at each time step, the resulting implicit discontinuous Galerkin time‐domain method allows for a noticeable reduction of the computing time as compared to its explicit counterpart based on a leap‐frog time integration scheme.

Research limitations/implications

The proposed method is useful if the underlying mesh is non‐uniform or locally refined such as when dealing with complex geometric features or with heterogeneous propagation media.

Practical implications

The paper is a first step towards the development of an efficient discontinuous Galerkin method for the simulation of three‐dimensional time‐domain electromagnetic wave propagation on non‐uniform tetrahedral meshes. It yields first insights of the capabilities of implicit time stepping through a detailed numerical assessment of accuracy properties and computational performances.

Originality/value

In the field of high‐frequency computational electromagnetism, the use of implicit time stepping has so far been limited to Cartesian meshes in conjunction with the finite difference time‐domain (FDTD) method (e.g. the alternating direction implicit FDTD method). The paper is the first attempt to combine implicit time stepping with a discontinuous Galerkin discretization method designed on simplex meshes.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 1 of 1